($5,79 \%$, eq i). ${ }^{11}$ Also, $\mathbf{4}$ is readily oxidized by static air (THF, 21 h) to $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{PPh}_{2} \mathrm{O}\right)(6,71 \%) .{ }^{11}$

In view of the numerous common transition-metal ligands with lone pairs on the ligating atoms ($\mathrm{OR}, \mathrm{SR}, \mathrm{SR}_{2}, \mathrm{NR}_{2}$, etc.), we believe that the ideas set forth above will prove useful in interpreting a large body of structural and reactivity data. Our results also suggest several reasons for the ease of formation and stability of bridging phosphide ${ }^{16}$ ligands and may bear on the extremely low phosphorus inversion barriers observed with 4 and related complexes. ${ }^{17}$

Acknowledgment. We thank the National Science Foundation for support of this research.

Supplementary Material Available: Tables of analytical (3-6) and crystallographic (4) data (31 pages). Ordering information is given on any current masthead page.
(16) (a) Carty, A. J. Adv. Chem. Ser. 1982, No. 196, 163. (b) Schäfer, H. Z. Anorg. Allg. Chem. 1980, 467, 105. (c) Burckett-St. Laurent, J. C. T. R.; Haines, R. J.; Nolte, C. R.; Steen, N. D. C. T. Inorg. Chem. 1980, 19, 577. (d) Finke, R. G.; Gaughan, G.; Pierpont, C.; Cass, M. E. J. Am. Chem. Soc. 1981, 103, 1394 . (e) Yu, Y.-F.; Gallucci, J.; Wojcicki, A. Ibid. 1983, 105, 4826. (f) Kyba, E. P.; Mather, J. D.; Hassett, K. L.; McKennis, J. S.; Davis, R. E. Ibid. 1984, 106, 5371. (g) Breen, M. J.; Shulman, P. M.; Geoffroy, G. L.; Rheingold, A. L.; Fultz, W. C. Organometallics 1984, 3, 782. (h) Rosen, R. P.; Hoke, J. B.; Whittle, R. R.; Geoffroy, G. L.; Hutchinson, J. P.; Zubieta, J. A. Ibid. 1984, 3, 846.
(17) (a) Buhro, W. E.; Gladysz, J. A., submitted for publication. (b) Malisch, W.; Maisch, R.; Meyer, A.; Greissinger, D.; Gross, E.; Colquhoun, I. J.; McFarlane, W. Phosphorus Sulfur 1983, 18, 299.

An Extremely Short Way to Prostaglandins ${ }^{1}$

M. Suzuki, A. Yanagisawa, and R. Noyori*
Department of Chemistry, Nagoya University Chikusa, Nagoya 464, Japan
Received December 26, 1984

Among various strategies for prostaglandin (PG) synthesis, the three-component coupling process ${ }^{1}$ is one of the ideal approaches in view of the directness and synthetic flexibility. Obviously, the ultimate goal along this line is, as illustrated by eq 1 ($M=$ metal, $X=$ halogen), the single-pot construction of the whole frameworks

via organometallic-aided conjugate addition of the ω side-chain unit to 4-oxygenated 2 -cyclopentenones followed by trapping of the regiochemically defined enolate species by organic halides having α side-chain structures. However, Syntex groups ${ }^{2}$ among others, after pioneering, extensive study on this possibility, noted extreme difficulty in achieving the direct alkylation. ${ }^{3}$ Here we wish to announce the realization of this earnestly desired convergent synthesis. The success relies simply on the lithium (or copper) to tin transmetalation in the enolate stage, a technique elaborated earlier by Tardella (simple alkylation) ${ }^{4}$ and Itoh et
(1) Prostaglandin Synthesis. 10. Part 9: Noyori, R.; Suzuki, M. Angew.

Chem. 1984, 96, 854; Angew. Chem., Int. Ed. Engl. 1984, 23, 847.
(2) (a) Patterson, J. W., Jr.; Fried, J. H. J. Org. Chem. 1974, 39, 2506. (b) Davis, R.; Untch, K. G. Ibid. 1979, 44, 3755.
(3) These papers urged development of some modified or indirect threecomponent coupling processes. Functionally modified methods; (a) Suzuki, M.; Kawagishi, T.; Suzuki, T.; Noyori, R. Tetrahedron Lett. 1982, 23, 4057. (b) Suzuki, M.; Kawagishi, T.; Noyori, R. Ibid. 1982, 23, 5563. (c) Tanaka, T.; Toru, T.; Okamura, N.; Hazato, A.; Sugiura, S.; Manabe, K.; Kurozumi, S.; Suzuki, M.; Kawagishi, T.; Noyori, R. Ibid. 1983, 24, 4103. (d) Suzuki, M.; Yanagisawa, A.; Noyori, R. Ibid. 1984, 25, 1383. Indirect methods: Stork, G.; Isobe, M. J. Am. Chem. Soc. 1975, 97, 6260. Reference 2b. See also: Donaldson, R. E.; Saddler, J. C.; Byrn, S.; McKenzie, A. T.; Fuchs, P. L. J. Org. Chem. 1983, 48, 2167.
al. (vicinal carba-condensation). ${ }^{5}$
The requisite optically active cyclopentenone and ω side-chain blocks are now accessible in various ways. ${ }^{1,6}$ An organocopper reagent was prepared under our standard conditions ${ }^{7}$ by mixing the vinyllithium derived from $2 \mathbf{a}^{6,8}$ in ether and a THF solution containing copper(I) iodide (1 equiv) and tributylphosphine (2.6 equiv). Sequential treatments of the enone 1 with this copper

3

5a. $R=\operatorname{SiR}_{3}$
5b. $R=T H P$

$$
\mathrm{SiR}_{3}=\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}-t-\mathrm{C}_{4} \mathrm{H}_{9}
$$

reagent ($1: 1$ molar ratio, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$), ${ }^{9}$ hexamethylphosphoramide (11 equiv, $-78^{\circ} \mathrm{C}$, 30 min), triphenyltin chloride (1 equiv, -78 ${ }^{\circ} \mathrm{C}, 10 \mathrm{~min}$), and the allylic iodide 3^{10} (5 equiv, -30 to $-20^{\circ} \mathrm{C}$, 17 h) afforded stereoselectively the PGE_{2} derivative 5 a in 78% yield, ${ }^{11-13}[\alpha]^{19}{ }_{\mathrm{D}}-49.9^{\circ}\left(c 1.02, \mathrm{CH}_{3} \mathrm{OH}\right)$. No PGA derivatives were detected. Natural PGE_{2} can be obtained from $\mathbf{5 a}$ by removal of the silyl protective group with HF-pyridine ${ }^{3 \mathrm{~b}}$ followed by enzymatic ester hydrolysis. ${ }^{14}$ In a like manner, $\mathbf{5 b}$ (a versatile precursor of D series of PGs), $[\alpha]^{16}{ }_{\mathrm{D}}-60.0^{\circ}\left(c 1.02, \mathrm{CH}_{3} \mathrm{OH}\right)$, was prepared in 77% yield by the one-pot condensation of $\mathbf{1 , 2 b}$, and $3 .{ }^{13}$ Use of methyl 7 -iodoheptanoate, a saturated alkylating agent ($-20^{\circ} \mathrm{C}, 16 \mathrm{~h}$), gave the corresponding PGE_{1} derivative in only 20% yield. ${ }^{13}$

Utilization of the propargylic iodide ${ }^{15}$ as the α side-chain unit allowed the synthesis of 6 in 82% yield, $[\alpha]^{17}{ }_{D}-13.2^{\circ}(c 0.59$,

[^0]$\mathrm{CH}_{3} \mathrm{OH}$) (a single stereoisomer as assayed by ${ }^{13} \mathrm{C}$ NMR). ${ }^{13}$ The acetylenic compounds of type 6 serve as common intermediates for the general synthesis of the PG family. ${ }^{1,36}$ With this highly efficient chemical operation secured, PGI_{2} is now obtainable in only five steps starting from the chiral cyclopentenone 1. ${ }^{16}$

Registry No. 1, 61305-35-9; 2a (lithio derivative), 41138-68-5; 2b (lithio derivative), 96038-40-3; 3, 64493-06-7; 4, 31776-12-2; 5a, 66602-10-6; 5a (PGE P $_{1}$ analogue), 86982-75-4; 5b, 95935-97-0; 6, 59895-16-8; $\mathrm{I}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{COOCH}_{3}, 38315-25-2$.
(16) Suzuki, M.; Yanagisawa, A.; Noyori, R. Tetrahedron Lett. 1983, 24, 1187.

Dehydrophenylalanine as the $i+2$ th Residue of a β Turn: Synthesis and Conformational Analysis of cyclo (Gly-Pro- Δ^{z}-Phe-D-Ala-Pro) and cyclo (Gly-Pro-D-Phe-D-Ala-Pro)

Alvin C. Bach, II, and Lila M. Gierasch*

Department of Chemistry, University of Delaware

Newark, Delaware 19716
Received November 5, 1984
Analogues of several biologically active peptides, in which trans $-\alpha, \beta$-didehydrophenylalanine (Δ^{2}-Phe) is substituted for phenylalanine, exhibit high potency ${ }^{1-3}$ and increased resistance to chymotrypsin degradation. ${ }^{1}$ However, in other examples ${ }^{4}$ the Δ^{z}-Phe-containing analogue is markedly less active than the Phe-containing peptide. While the conformational behavior of a Δ^{z}-Phe, with π-bonding between C^{α} and C^{β}, is expected to differ significantly from that of (saturated) Phe, there is as yet no clear understanding of its influence on the available conformations of a peptide.

In both X-ray diffraction analyses and conformational energy calculations of Δ^{z}-Phe-containing peptides the ϕ angle of the dehydro residue is frequently near 60° and ψ near 0°.s For example, the X-ray crystal structure of N-acetyl- Δ^{z}-Phe has ϕ $=72^{\circ}$ and $\psi=13^{\circ} ; 6$ the X -ray crystal structure of N-pivaloyl-Pro- Δ^{2}-Phe-methylamide has $\phi=63^{\circ}$ and $\psi=10^{\circ}$ for Δ^{z}-Phe; ${ }^{7}$ energy calculations on N-acetyl- Δ^{z}-Phe-methylamide show an energy minimum at $\phi=60^{\circ}$ and $\psi=10^{\circ} .{ }^{8}$ The similarity of the preferred Δ^{2}-Phe conformation to that taken up by a residue in the $i+2$ position of a type II β turn is noteworthy: average ϕ and ψ values in type II β turns (from X-ray data) are 80° and 0°, respectively, for the $i+2$ position. ${ }^{9}$ Substitution of Δ^{2}-Phe for such a residue in a peptide may result in a conformationally homologous dehydropeptide.

To test this hypothesis we have synthesized two cyclic pentapeptides: cyclo(Gly ${ }^{1}-\mathrm{Pro}^{2}-\Delta^{2}$-Phe ${ }^{3}$-D-Ala ${ }^{4}$ - Pro^{5}) I (the cyclic dehydropeptide) and $\mathrm{cyclo}\left(\mathrm{Gly}^{1}-\mathrm{Pro}^{2}-\mathrm{D}-\mathrm{Phe}^{3}-\mathrm{D}-\mathrm{Ala}{ }^{4}-\mathrm{Pro}^{5}\right) \mathrm{II}$ (the
(1) English, M. L.; Stammer, C. H. Biochem. Biophys. Res. Commun. 1978, 83, 1464-1467.
(2) Chipkin, R. E.; Stewart, J. M.; Stammer, C. H. Biochem. Biophys. Res. Commun. 1979, 87, 890-895.
(3) English, M. L.; Stammer, C. H. Biochem. Biophys. Res. Commun. 1978, 85, 780-782.
(4) Brady, S. F.; Cochran, D. W.; Nutt, R. F.; Holly, F. W.; Bennett, C. D.; Paleveda, W. J.; Curley, P. E.; Arison, B. H.; Saperstein, R.; Veber, D. F. Int. J. Peptide Protein Res. 1984, 23, 212-222.
(5) Ajo, D.; Granozzi, G.; Tondello, E. Biopolymers 1980, 19, 469-475.
(6) Ajo, D.; Casarin, M.; Granozzi, G.; Busett, V. Tetrahedron 1981, 37, 3507-3512.
(7) Aubry, A.; Allier, F.; Boussard, G.; Marraud, M. Proceedings of the International Forum on Peptides, Le Cap D'Agde-France, Sept 24-28, 1984, in press.
(8) Ajo, D.; Casarin, M.; Granozzi, G. J. Mol. Struct. 1982, 86, 297-300.
(9) Smith, J. A.; Pease, L. G. CRC Crit. Rev. Biochem. 1980, 8, 315-399.

(I)

(II)
cyclic peptide). We anticipated from previous work ${ }^{10-12}$ that I would favor a Gly-Pro-D-Phe-D-Ala type II β turn, i.e., with D-Phe in position $i+2$ of the turn and with a D-Ala-Pro-Gly γ turn (see below). We present evidence that it does. Furthermore, substitution of Δ^{z}-Phe for D-Phe (in peptide I) causes very little conformational change, in keeping with the above hypothesis.

The cyclic peptide II was synthesized by methods previously reported, ${ }^{10}$ including cyclization of the pentapeptide p-nitrophenyl ester (yield, 37%). An unsaturated azlactone was prepared from Boc-Pro-dl- β-phenyl-Ser-OH by the modified Bergmann synthesis ${ }^{13}$ and was coupled with H-D-Ala-Pro-Gly-OMe giving a Δ^{z}-Phe-containing pentapeptide which was then cyclized as the p-nitrophenyl ester (yield, 5%). Since the cyclization conditions were the same for I and II, these different yields reflect the relative ease of forming cyclic product; the required folded conformation may be less accessible to the dehydropeptide. Both I and II are pure by thin-layer and high-performance liquid chromatography, and their monomeric character was confirmed by chemical ionization mass spectroscopy. ${ }^{14}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance (NMR) data (Figures 1 B and 2B) support the proposed conformation of the cyclic peptide II. The resonances of the D-Ala and Gly NH's occur at 7.83 and 7.78 ppm , respectively, typical of NH's involved in intramolecular hydrogen bonds; ${ }^{9}$.10c by comparison, the D-Phe NH resonates at higher field (5.89 ppm) as expected for a non-hy-drogen-bonded NH in a solvent like CDCl_{3}, at high dilution (21 $\mathrm{mM}) .{ }^{9,10 c}$ The D-Ala and Gly NH's also show reduced temper-

[^1]
[^0]: (4) Tardella, P. A. Tetrahedron Lett. 1969, 1117. See also: Yamamoto, Y.; Maruyama, K. "Abstract of Papers"; 28th Symposium on Organometallic Chemistry, Japan, Osaka, Nov 1981; p 151.
 (5) Nishiyama, H.; Sakuta, K.; Itoh, K. Tetrahedron Lett. 1984, 25, 223; 1984, 25, 2487.
 (6) In this context, asymmetric reduction with the binaphthol-modified lithium aluminum hydride reagent is very useful: Noyori, R.; Tomino, I.; Yamada, M.; Nishizawa, M. J. Am. Chem. Soc. 1984, 106, 6717.
 (7) Suzuki, M.; Suzuki, T.; Kawagishi, T.; Morita, Y.; Noyori, R. Isr. J. Chem. 1984, 24, 118.
 (8) For optical resolution of the ω side-chain unit, see: Kluge, A. F.; Untch, K. G.; Fried, J. H. J. Am. Chem. Soc. 1972, 94, 7827.
 (9) The conjugate addition proceeds in a completely stereoselective manner to give after aqueous quenching only the $\mathrm{C}-11 / \mathrm{C}-12$ (PG numbering) trans product.!
 (10) Posner, G. H.; Sterling, J. J.; Whitten, C. E.; Lentz, C. M.; Brunelle, D. J. J. Am. Chem. Soc. 1975, 97, 107.
 (11) In model vicinal carba-condensation procedures, tributyltin chloride, ${ }^{4,5}$ iodide, or fluoride (but not triflate) could also be used, but less effectively. We consider that the alkylation proceeds via the penta- or hexacoordinate stannate species. For alkylation of $\operatorname{tin}(I V)$ enolates and related species, see: Odic, Y.; Pereyre, M. J. Organomet. Chem. 1973, 55, 273. References 4 and 5.
 (12) In addition, the $\mathrm{C}-8$ epimer ${ }^{13}$ was obtained in $2-3 \%$ yield.
 (13) All products were identified by comparison with authentic samples.
 (14) Sih, C. J.; Heather, J. B.; Sood, R.; Price, P.; Perzzotti, G.; Lee, L. F. H.; Lee, S. S. J. Am. Chem. Soc. 1975, 97, 865. Hazato, A.; Tanaka, T.; Toru, T.; Okamura, N.; Bannai, K.; Sugiura, S.; Manabe, K.; Kurozumi, S. Nippon Kagaku Kaishi 1983, 1392.
 (15) Prepared by treatment of 6-(carbomethoxy)-2-hexyn-1-ol with a mixture of triphenyl phosphite, iodine, and pyridine (3 equiv each) in ether $\left(0^{\circ} \mathrm{C}, 30 \mathrm{~min}\right)$ in 73% yield.

[^1]: (10) (a) Pease, L. G.; Watson, C. J. Am. Chem. Soc. 1978, 100, 1279-1286. (b) Pease, L. G.; Niu, C. H.; Zimmermann, G. J. Am. Chem. Soc. 1979, 101, 184-191. (c) Pease, L. G. "Peptides: Structure and Biological Function"; Gross, E., Meienhofer, J., Eds.; Pierce Chemical Co.: Rockford, IL, 1979; pp 197-200.
 (11) Bach, A. C., II; Bothner-By, A. A.; Gierasch, L. M. J. Am. Chem. Soc. 1982, 104, 572-576.
 (12) Karle, I. L. J. Am. Chem. Soc. 1978, 100, 1286-1289.
 (13) Konno, S.; Stammer, C. H. Int. J. Peptide Protein Res. 1978, 12, 222-231.
 (14) Precise Mass: I, $468.226\left(\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{5}+\mathrm{H}\right)^{+}$; II, 470.241 $\left(\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{5}+\mathrm{H}\right)^{+}$.

